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Spectral Sampling (2)

+ If we now CONSTRUCT a periodic signal x;,(t), we will
expect the spectrum of this signal to be discrete (expressed

as Fourier series). L X(w)
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Spectral Sampling (1)

+ As expected, time sampling has a dual: spectral sampling.
+ Consider a time limited signal x(t) with a spectrum X(w).
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The Discrete Fourier Transform (DFT) (1)

¢ Fourier transform is computed (on computers) using discrete techniques.

+ Such numerical computation of the Fourier transform is known as
Discrete Fourier Transform (DFT).

+ Begin with time-limited signal x(t), we want to compute its Fourier

Transform X(w).
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¢ We know the effect of sampling in time domain:
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The Discrete Fourier Transform (DFT) (2)
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¢ Now construct the sampled version of x(t) as repeated copies. The effect
(from slides 2-3) is sampling the spectrum.
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Picket Fence Effect

+ Numerical computation method yields uniform sampling
values of X(w).

+ Information between samples in spectrum is missing — picket
fence effect:

+ Can improve spectral
resolution by
increasing T.
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Aliasing and Leakage Effects
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+ Since X(w) is not bandlimited, we will get some aliasing
effect:
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+ Furthermore, if x(t) is not time limited, we need to truncate x
(t) with a window function. This leads to leakage effect (as

discussed in last lecture).
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Formal definition of DFT

+ If x(nT) and X(rwg) are the n™ and rt" samples of x(t) and X(w)
respectively, then we define:

T;
X, =Tx(nT) = Fox(nT) and X, = X(ray)
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Example (1) Example (2)
¢ Use DFT to compute the Fourier Transform of 8*rect(t). * After sampling and repetition: Fs=8Hz
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